
Week 2 - Wednesday



 What did we talk about last time?
 Exceptions
 OOP
 Interfaces











 Allow classes, interfaces, and methods to be written with a 
generic type parameter, then bound later

 Java does the type checking (e.g. making sure that you only 
put String objects into a List<String>)

 After type checking, it erases the generic type parameter
 This works because all classes extend Object in Java

 Appears to function like templates in C++, but works very 
differently under the covers

 Most of the time you will use generics, not create them



 You can make a class using generics
 The most common use for these is container classes
 For example, you want a List class that can be a list of anything

 The JCF is filled with such generics



public class Pair<T> {
private T x;
private T y;
public Pair(T a, T b ) {

x = a;
y = b;

}

public T getX() { return x; }
public T getY() { return y; }

public void swap() {
T temp = x;
x = y;
y = temp;

}

public String toString() {
return "( " + x + ", " + y + " )";

}
}



public class Test {
public static void main(String[] args) {

Pair<String> pair1 = new Pair<>("ham", "eggs");
Pair<Integer> pair2 = new Pair<>(5, 7);
pair1.swap();
System.out.println(pair1);
System.out.println(pair2);

}
}



Java Collections Framework



 Collection
 Iterable
 List
 Queue
 Set
 SortedSet

 Map
 SortedMap



 LinkedList
 ArrayList
 Stack
 Vector
 HashSet
 TreeSet
 HashMap
 TreeMap



 Collections
 sort()
 max()
 min()
 replaceAll()
 reverse()

 Arrays
 binarySearch()
 sort()





 How do we measure the amount of time an algorithm takes?
 Surely sorting 10 numbers takes less time than sorting 

1,000,000 numbers
 Sorting 1,000,000 numbers that are already sorted seems 

easier than sorting 1,000,000 unsorted numbers
 We use a worst-case, asymptotic function of input size called 

Big Oh notation



 Worst-case because we care about how bad things could be
 Asymptotic because we ignore lower order terms and 

constants
 15n2 + 6n + 7log(n) + 145 is O(n2)
 2n + 3906n10000 + 892214 is O(2n)
 If the function of n is polynomial, we say that it is efficient or 

tractable



 For running time functions f(n) listed below, give the Big Oh
 f(n) = 3n2 + 4n + 100
 O(n2)

 f(n) = 15n3 + nlog n + 100
 O(n3)

 f(n) = 1000n + 10000log  n
 O(n)

 f(n) = 5050
 O(1)



 We assume that all individual operations take the same 
amount of time

 So, we compute how many total operations we'll have for an 
input size of n (because we want to see how running time 
grows based on input size)

 Then, we find a function that describes that growth



 How long does it take to do multiplication by hand?
123

x 456
738
615

492__
56088

 Let’s assume that the length of the numbers is n digits
 (n multiplications + n carries) x n digits + (n + 1 digits) x n additions 
 Running time: O(n2)



 How do we find the largest element in an array?

 Running time: O(n) if n is the length of the array
 What if the array is sorted in ascending order?

 Running time: O(1)

int largest = array[0];
for (int i = 1; i < length; ++i) {
if (array[i] > largest) {

largest = array[i];
}

}
System.out.println("Largest: " + largest);

System.out.println("Largest: " + array[length-1]);



 Given two n x n matrices A and B, the code to multiply them is:

 Running time: O(n3)
 Is there a faster way to multiply matrices?
 Yes, but it’s complicated and has other problems

double[][] c = new double[N][N];
for (int i = 0; i < N; ++i) {

for (int j = 0; j < N; ++j) {
c[i][j] = 0;
for (int k = 0; k < N; ++k) {

c[i][j] += a[i][k]*b[k][j];
}

}
}



 Here is some code that sorts an array in ascending order
 What is its running time?

 Running time: O(n2)

for (int i = 0; i < array.length - 1; ++i) {
for (int j = 0; j < array.length - 1; ++j) {

if (array[j] > array[j + 1]) {
int temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;   

}  
}

}



 Here is some code that prints out a triangular shaped set of stars
 What is its running time?

 Running time: O(n2)

for (int i = 0; i < n; ++i) {
for (int j = 0; j <= i; ++j) {

System.out.print("*");
}
System.out.println();

}



 What's the running time to factor a large number N?
 How many edges are in a completely connected graph?
 If you have a completely connected graph, how many possible 

tours are there (paths that start at a given node, visit all other 
nodes, and return to the beginning)?

 How many different n-bit binary numbers are there?



 Let f(n) and g(n) be two functions over integers
 f(n) is O(g(n)) if and only if
 f(n) ≤ c∙g(n) for all n > N
 for some positive real numbers c and N

 In other words, past some arbitrary point, with some arbitrary 
scaling factor, g(n) is always bigger





 Computing complexity
 Abstract data types (ADTs)



SCAN the QR CODE to REGISTER



 Read section 1.2
 Finish Assignment 1
 Due Friday by midnight

 Start Project 1
 Due Friday, September 20 by midnight
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