
Week 2 - Wednesday

 What did we talk about last time?
 Exceptions
 OOP
 Interfaces

 Allow classes, interfaces, and methods to be written with a
generic type parameter, then bound later

 Java does the type checking (e.g. making sure that you only
put String objects into a List<String>)

 After type checking, it erases the generic type parameter
 This works because all classes extend Object in Java

 Appears to function like templates in C++, but works very
differently under the covers

 Most of the time you will use generics, not create them

 You can make a class using generics
 The most common use for these is container classes
 For example, you want a List class that can be a list of anything

 The JCF is filled with such generics

public class Pair<T> {
private T x;
private T y;
public Pair(T a, T b) {

x = a;
y = b;

}

public T getX() { return x; }
public T getY() { return y; }

public void swap() {
T temp = x;
x = y;
y = temp;

}

public String toString() {
return "(" + x + ", " + y + ")";

}
}

public class Test {
public static void main(String[] args) {

Pair<String> pair1 = new Pair<>("ham", "eggs");
Pair<Integer> pair2 = new Pair<>(5, 7);
pair1.swap();
System.out.println(pair1);
System.out.println(pair2);

}
}

Java Collections Framework

 Collection
 Iterable
 List
 Queue
 Set
 SortedSet

 Map
 SortedMap

 LinkedList
 ArrayList
 Stack
 Vector
 HashSet
 TreeSet
 HashMap
 TreeMap

 Collections
 sort()
 max()
 min()
 replaceAll()
 reverse()

 Arrays
 binarySearch()
 sort()

 How do we measure the amount of time an algorithm takes?
 Surely sorting 10 numbers takes less time than sorting

1,000,000 numbers
 Sorting 1,000,000 numbers that are already sorted seems

easier than sorting 1,000,000 unsorted numbers
 We use a worst-case, asymptotic function of input size called

Big Oh notation

 Worst-case because we care about how bad things could be
 Asymptotic because we ignore lower order terms and

constants
 15n2 + 6n + 7log(n) + 145 is O(n2)
 2n + 3906n10000 + 892214 is O(2n)
 If the function of n is polynomial, we say that it is efficient or

tractable

 For running time functions f(n) listed below, give the Big Oh
 f(n) = 3n2 + 4n + 100
 O(n2)

 f(n) = 15n3 + nlog n + 100
 O(n3)

 f(n) = 1000n + 10000log n
 O(n)

 f(n) = 5050
 O(1)

 We assume that all individual operations take the same
amount of time

 So, we compute how many total operations we'll have for an
input size of n (because we want to see how running time
grows based on input size)

 Then, we find a function that describes that growth

 How long does it take to do multiplication by hand?
123

x 456
738
615

492__
56088

 Let’s assume that the length of the numbers is n digits
 (n multiplications + n carries) x n digits + (n + 1 digits) x n additions
 Running time: O(n2)

 How do we find the largest element in an array?

 Running time: O(n) if n is the length of the array
 What if the array is sorted in ascending order?

 Running time: O(1)

int largest = array[0];
for (int i = 1; i < length; ++i) {
if (array[i] > largest) {

largest = array[i];
}

}
System.out.println("Largest: " + largest);

System.out.println("Largest: " + array[length-1]);

 Given two n x n matrices A and B, the code to multiply them is:

 Running time: O(n3)
 Is there a faster way to multiply matrices?
 Yes, but it’s complicated and has other problems

double[][] c = new double[N][N];
for (int i = 0; i < N; ++i) {

for (int j = 0; j < N; ++j) {
c[i][j] = 0;
for (int k = 0; k < N; ++k) {

c[i][j] += a[i][k]*b[k][j];
}

}
}

 Here is some code that sorts an array in ascending order
 What is its running time?

 Running time: O(n2)

for (int i = 0; i < array.length - 1; ++i) {
for (int j = 0; j < array.length - 1; ++j) {

if (array[j] > array[j + 1]) {
int temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;

}
}

}

 Here is some code that prints out a triangular shaped set of stars
 What is its running time?

 Running time: O(n2)

for (int i = 0; i < n; ++i) {
for (int j = 0; j <= i; ++j) {

System.out.print("*");
}
System.out.println();

}

 What's the running time to factor a large number N?
 How many edges are in a completely connected graph?
 If you have a completely connected graph, how many possible

tours are there (paths that start at a given node, visit all other
nodes, and return to the beginning)?

 How many different n-bit binary numbers are there?

 Let f(n) and g(n) be two functions over integers
 f(n) is O(g(n)) if and only if
 f(n) ≤ c∙g(n) for all n > N
 for some positive real numbers c and N

 In other words, past some arbitrary point, with some arbitrary
scaling factor, g(n) is always bigger

 Computing complexity
 Abstract data types (ADTs)

SCAN the QR CODE to REGISTER

 Read section 1.2
 Finish Assignment 1
 Due Friday by midnight

 Start Project 1
 Due Friday, September 20 by midnight

	COMP 2100
	Last time
	Assignment 1
	Project 1
	Questions?
	Generics
	Generics
	Generic classes
	Generic class example
	Generic class use
	JCF
	Container interfaces
	Container classes
	Tools
	Computational Complexity
	Running Time
	Big Oh Notation
	Examples
	Back to CS world
	Multiplication by hand
	Finding the largest element in an array
	Multiplying matrices
	Bubble sort
	Printing a triangle
	Mathematical issues
	Formal definition of Big Oh
	Upcoming
	Next time…
	Slide Number 29
	Reminders

